منابع مشابه
Perfect difference sets constructed from Sidon sets
A set A of positive integers is a perfect difference set if every nonzero integer has an unique representation as the difference of two elements of A. We construct dense perfect difference sets from dense Sidon sets. As a consequence of this new approach we prove that there exists a perfect difference set A such that A(x) ≫ x √ . Also we prove that there exists a perfect difference set A such t...
متن کاملGeneralized Sidon sets
We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B
متن کاملSidon sets and Riesz products
© Annales de l’institut Fourier, 1985, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn Multiplicative Sidon Sets
Fix integers b > a ≥ 1 with g := gcd(a, b). A set S ⊆ N is {a, b}-multiplicative if ax 6= by for all x, y ∈ S. For all n, we determine an {a, b}-multiplicative set with maximum cardinality in [n], and conclude that the maximum density of an {a, b}-multiplicative set is b b+g . Erdős [2, 3, 4] defined a set S ⊆ N to be multiplicative Sidon1 if ab = cd implies {a, b} = {c, d} for all a, b, c, d ∈...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1972-0310551-9